MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY DABWALI ROAD, BATHINDA

[Established by State Government of Punjab vide Act No. 5 of 2015 u/s UGC Act 2(f)]

PET-2017 (Civil Engineering – Faculty of Engineering and Technology)

Roll No:	Date. 2 5 JUN 2017
Signature of the Candidate:	

- 1. The relationship between modulus of elasticity E and bulk modulus of elasticity K, when the poisson's ratio is 0.3, is
 - (A) E = K
 - (C) E = 1.5 K

- (B) E = 2K (D) E = 1.2 K
- 2. A simply supported beam of span I carries a uniformly varying load from zero at either end to w/length at the mid span. The maximum bending moment will be

(C) $\frac{wl^2}{24}$ at mid span

- (B) $\frac{wl^2}{10}$ at mid span (D) $\frac{wl^2}{10}$ at quarter span
- A column of 50 mm x 50 mm is fixed on the ground and carries an eccentric load of 2 kN as 3. shown in figure. If the stress developed along the end CD is $^{2N}\!/_{\!mm^2}$, the stress along the edge AB will be

(B)
$$-0.6 N/mm^2$$

(D)
$$-0.2 N/mm^2$$

4.	cm, 3 o N/mm ² ratio o	steel bar is in three parts e m and 4 cm respectively. T and the elongation in the the f the greatest to the least el	he bars are subject hree parts of the boungation of these	cted to an axial pull of 10 kM ar are Δ_1, Δ_2 and Δ_3 respect bars will be	1. If $E = 2 \times 10$
	(A)	4	(B)	3	
	CA	16	(D)	9	
5.	distrib	tilever beam of span 'L' outed over its length and a cement to be zero at the fre	concentrated up	ward load 'P' at its free en	kN uniformly d. For vertica
	A	300 kN	(B)	500 kN	
	(C)	800 kN	(D)	1000 kN	
6.	its fre	tilever beam 'A' with rectar ee end. If width and depth tion at free end of the beam	n of another bean n 'B' to that of 'A' v	m 'B' are twice those of vill be	ntrated load a beam 'A', th
	(A)	6.25 %	, ,	14 %	
	(C)	23.6 %	(D)	28 %	
7.	and t	cylinder contains fluid at a ensile stress in the mater num wall thickness of nearly	pressure of 500 N	I/m ² , internal diameter of th	e shell is 0.6 r I must have
7.	and t	ensile stress in the mater	pressure of 500 N	I/m ² , internal diameter of th	e shell is 0.6 r I must have
7.	and t	ensile stress in the mater num wall thickness of nearly	pressure of 500 N ial is to be limited (B)	I/m ² , internal diameter of the d to 9000 N/m ² . The shel	e shell is 0.6 r I must have
7.	(A) Consi P: th	ensile stress in the materi num wall thickness of nearly 9 mm	pressure of 500 N ial is to be limite ((B) (D)	A/m ² , internal diameter of the d to 9000 N/m ² . The shell 11 mm 21 mm	over reinforce
	Consi P: the be Q: the	9 mm 17 mm der the following statement behavior of an under reineram. se over reinforced beam core	pressure of 500 N ial is to be limited (B) (D) is inforced beam is mentains more steel a	I/m ² , internal diameter of the d to 9000 N/m ² . The shelf of the sh	over reinforce
	(A) Consi P: th	9 mm 17 mm der the following statement behavior of an under reine am. Both P & Q are true and Q is not the material and Q is not true and	pressure of 500 N ial is to be limited (B) (D) is inforced beam is mentains more steel a	A/m ² , internal diameter of the d to 9000 N/m ² . The shell 11 mm 21 mm	over reinforce
	Consi P: the be Q: the	9 mm 17 mm der the following statement behavior of an under reineram. se over reinforced beam core	pressure of 500 N ial is to be limited (B) (D) is inforced beam is mentains more steel a	I/m ² , internal diameter of the d to 9000 N/m ² . The shell 11 mm 21 mm ore ductile than that of an element steel is more ductile that Both P & Q are true and Q	over reinforce
	Consi P: the beautiful (A)	9 mm 17 mm der the following statement he behavior of an under reine am. Both P & Q are true and Q is correct explanation of P	pressure of 500 Mial is to be limited (B) (C) (B) (C) (C) (C) (C) (D)	A/m ² , internal diameter of the d to 9000 N/m ² . The shell 11 mm 21 mm and steel is more ductile that Both P & Q are true and Q explanation of P P is false and Q is true	over reinforce
8.	Consi P: the beautiful (A)	9 mm 17 mm der the following statement he behavior of an under reine am. Both P & Q are true and Q is correct explanation of P P is true and Q is false einforced concrete retaining The retaining wall fails due excessive shear stress in the	pressure of 500 Mial is to be limited (B) (C) (B) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	A/m ² , internal diameter of the d to 9000 N/m ² . The shell 11 mm 21 mm and steel is more ductile that Both P & Q are true and Q explanation of P P is false and Q is true	over reinforce un concrete. is not correct
8.	Consi P: the be Q: the (A)	9 mm 17 mm der the following statement he behavior of an under reine am. Both P & Q are true and Q is correct explanation of P P is true and Q is false einforced concrete retaining The retaining wall fails due	pressure of 500 Mial is to be limited (B) (C) (B) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	I/m ² , internal diameter of the d to 9000 N/m ² . The shell 11 mm 21 mm ore ductile than that of an element of the diameter	over reinforce in concrete. is not correct

10.	The maximum strain in the extreme fibre in concrete and in the	tensile	re	einforce	ment in	a
	balanced section at limit state of flexure are respectively.	2	5	IIIN	2017	

(B)
$$0.0035 \text{ and } \frac{\text{fy}}{1.15\text{E}_{\text{s}}} + 0.0035$$

(C)
$$0.002 \text{ and } \frac{fy}{1.15E_s} + 0.002$$

(D)
$$0.0035 \text{ and } \frac{E_s}{1.15 \text{fy}} + 0.002$$

11. The four columns of same material and same dimensions are supported in the following ways.

The columns are to be arranged in the increasing order of their buckling load. The correct order will be

(B)
$$1.1, 0.36 \left[\frac{Ag}{Ac} - 1 \right] \frac{f_y}{f_{ck}}$$

$$1.05, 0.36 \left[\frac{Ag}{Ac} - 1\right] \frac{f_{ck}}{f_y}$$

$$(\text{D}) \qquad 1.05, 0.36 \left[\frac{\text{Ag}}{\text{Ac}} - 1\right] \frac{f_y}{f_{ck}}$$

The symbols have their usual meaning.

- 13. What will be the load carrying capacity of an axially loaded short column having 90000 mm^2 as concrete area and 600 mm^2 as steel area? f_{ck} is 25N/mm² and f_y is 500 N/mm²
 - (A) 1000 kN

B) 1300 kM

(C) 1200 kN

1100 km

- (i) Factor of safety of concrete should be based on its yield stress.
- (ii) Factor of safety of steel should be based on its yield stress.
- (iii) Factor of safety of concrete should be based on its ultimate stress.
- (iv) Factor of safety of steel should be based on its ultimate stress.

The correct statements are

(A) (i) and (ii)

- (B)
- (ii) and (iii)

(C) (iii) and (iv)

(iv) and (i)

	/			2 5 JUN 2017
	(A)	≤ 320 mm	(B)	≤ 500 mm
	(C)	≤ 250 mm	(D)	200 mm
16.	ML ⁻¹ T	² is the dimensional formula of		
	(A)	Pressure	(B)	Stress
	(C)	Modulus of elasticity	V (B)	All of these
17.	For a	catchment with an area of 360 km², r unit hydrograph summation is	the equil m³/s	ibrium discharge of a S- curve obtained by
	SA	250	(B)	1.5 x 10 ⁴
	(C)	90X10 ⁴	(D)	1.5×10^3
18.		otal stress and effective stress at a ctively	depth of	10 m below the water surface in a lake are
	(A)	, Zero and zero	(B)	Zero and 98.1 kN/m²
	(e)	98.1 kN/m ² and zero	(D)	98.1 kN/m ² and 98.1 kN/m ²
19.			, ,	
19.		etter strength and stability, the	, ,	98.1 kN/m ² and 98.1 kN/m ²
19.		etter strength and stability, the ctively compacted as	fine grai	98.1 kN/m ² and 98.1 kN/m ² ned soils and coarse grained soils are
19.	respective (C)	etter strength and stability, the ctively compacted as Wet of OMC and dry of OMC	fine grain (B) (D)	98.1 kN/m² and 98.1 kN/m² ned soils and coarse grained soils are Dry of OMC and wet of OMC Dry of OMC and dry of OMC
	respective (C)	etter strength and stability, the ctively compacted as Wet of OMC and dry of OMC Wet of OMC and wet of OMC	fine grain (B) (D)	98.1 kN/m² and 98.1 kN/m² ned soils and coarse grained soils are Dry of OMC and wet of OMC Dry of OMC and dry of OMC
	respective (C)	etter strength and stability, the ctively compacted as Wet of OMC and dry of OMC Wet of OMC and wet of OMC g the consolidation process of a sat A gradual increase in neutral pressure and a gradual decrease in effective pressure occurs and the sum of the two remains	fine grain (B) (D)	98.1 kN/m² and 98.1 kN/m² ned soils and coarse grained soils are Dry of OMC and wet of OMC Dry of OMC and dry of OMC ay, there is A gradual decrease in neutral pressure and a gradual decrease in effective pressure occurs and the sum of the two
	respective (C) During (A) (C)	etter strength and stability, the ctively compacted as Wet of OMC and dry of OMC Wet of OMC and wet of OMC The consolidation process of a sate of a sate of a gradual increase in neutral pressure and a gradual decrease in effective pressure occurs and the sum of the two remains constant Both neutral pressure and effective pressure decreases	(B) (D) urated cla (B) (D)	98.1 kN/m² and 98.1 kN/m² ned soils and coarse grained soils are Dry of OMC and wet of OMC Dry of OMC and dry of OMC ay, there is A gradual decrease in neutral pressure and a gradual decrease in effective pressure occurs and the sum of the two remains constant Both neutral pressure and effective
20.	respective (C) During (A) (C)	etter strength and stability, the ctively compacted as Wet of OMC and dry of OMC Wet of OMC and wet of OMC The consolidation process of a sate of the consolidation process	(B) (D) urated cla (B) (D)	98.1 kN/m² and 98.1 kN/m² ned soils and coarse grained soils are Dry of OMC and wet of OMC Dry of OMC and dry of OMC ay, there is A gradual decrease in neutral pressure and a gradual decrease in effective pressure occurs and the sum of the two remains constant Both neutral pressure and effective pressure increases

A discharge of 100 m³/s flows through a rectangular channel at a depth of 5 m. The width of 22. channel as per Lacey's formula should be

(B) 47.5 m

20 m

(D) 25 m

20000 m³ of water is supplied per day to a city after treating it with Cl₂ dose of 0.6 ppm. For 23. this purpose, the requirement of 30% bleaching powder per day would be

(g) 40 kg

(B) 12 ka

(D) 120 kg

If the x component of the velocity is $u = 6xy - 2x^2$ then the y component of flow v is given 24.

(A) $4xy - 3y^2$ (C) $-6xy + 2x^2$

(B) $6y^2 - 4xy$

(D) $5x^2 - 2xy$

25. The base period of a particular crop is 50 days and the duty of the canal is 500 hactares per cumec. The depth of water will be.

0.864 cm

(B) 8.64 cm

86.4 cm

(D) 864 cm

26. A concrete sewer of 2 m diameter is laid at a slope of 1 in 1000. When the sewer runs half full, the velocity of flow is 1 m/s. What will be the velocity when the sewer runs full?

1m/s

2m/s

2.5m/s

(D) 0.5m/s

The moment of inertia of a rectangular plate of width b and depth d about the face having 27. width b is

(A) $\frac{1}{12} bd^3$

(B) $\frac{1}{6} bd^3$

 $\frac{1}{3}$ bd³

(D) $\frac{1}{8}$ bd³

28. Two concentrated loads of 12 kN and 6 kN are respectively placed at 1 m and 2 m from the support of a cantilever beam of 2 m length. The self weight of beam is 1 kN/m. The maximum shear force will be

16 kN 20 kN

(B) 24 kN

(D) 10 kN

A pump lifts 50 m³ of water to a height of 10 m. The energy spent to lift the water is 29.

(A) $5 \times 10^6 \text{ kg} - \text{m}$

 $\begin{array}{c} 5 \times 10^5 \text{ kg} - \text{m} \\ \text{(D)} \quad 5 \times 10^3 \text{ kg} - \text{m} \end{array}$

(C) $5 \times 10^4 \text{ kg} - \text{m}$

30.	60 KN	tangular beam of 30 cm depth and Im at the centre. The moment of ing stress will be	20 cm bre inertia o	adth is having maximum bending moment f the beam is 45000 cm ⁴ . The maximum
	(4)	1 1.01/2-2 -4 45 - 5	1	2 5 JUN 2017
		1 kN/cm ² at the boundary	(B)	2 kN/cm² at the boundary 4/3 kN/cm² at the boundary
	(C)	$^2/_3$ kN/cm 2 at the boundary	(D)	$\frac{4}{3}$ kN/cm ² at the boundary
31.	Initial Final Dilution	ollowing data pertain to a sewage so D.O. = 10 mg/l D.O. = 2 mg/l on to 1% OD of the given sewage sample is	ample:	
	(A)	8 mg/l	(B)	10 mg/l
	(C)	100 mg/l	LON	10 mg/l 800 mg/l
32.	The a cm is be	rea between two isohytes of 35 cm 300 sq. km, the average depth of p	and 45 cn precipitation	n is 100 sq. km and between 45 cm and 55 on over the above basin of 400 sq. km will
	(A)	45 cm	(8)	48 cm
	(C)	50 cm		40 cm
33.	If the	principal stresses in a stressed boo stress will be	ly are 100	N/mm² and -50 N/mm² , the maximum
	(A)	- 50 N/mm ²	(B)	25 N/mm ²
	L'EN	- 50 N/mm ² 75 N/mm ²	(D)	25 N/mm ² - 25 N/mm ²
34.		ermeability of soil at 10° C is 2 cn eability of soil sample will be	n/sec. If th	ne temperature is increased to 25° C, the
	(A)	Less than 2 cm/s	(B)	More than 2 cm/s
	(C)	2 cm/s		1.9 cm/s
35.	The p	ressure head at a certain point in a	a pipe is 3	3.5 m of water. The pressure at that point
	(A)	3.5 kg/cm ²	(B)	3.5 kg/m ²
	19	3.5 kg/cm ² 0.35 kg/cm ²	(D)	35 kg/m ²
36.	Select	the correct statement		
	(A)	Psychological extra widening depends on the number of traffic lanes	(B)	Mechanical extra widening depends on the speed of vehicle
	(C)	Psychological extra widening depends on the length of wheel base	ST.	Mechanical extra widening depends upon the length of wheel base and radius of curve
				CH PUNJAB IS

	(A).	4t	(B)	2 5 JUN 2017
	(C)	t/2	LIDY	t/4
38.	Pneur	natic tyred rollers are suitable for co	ompacting	
	VA)	Non plastic silt and fine sands	(B)	Clayey soil
	(C)	Cohesiveness granular material	(D)	Black cotton soil
39.	The ci	ritical section for the bending mome	ent in isola	ated square footing shall be
	(A)	At half the effective depth of	(B)	At effective depth of footing from the
		footing from the periphery of the		periphery of the column
	/	column		
	V(C)	At the periphery of the column	(D)	At the centre of the footing
10.	Study	the following statements		
	an	id grade of steel		beam is a function of grade of concrete function of proportion of tensile steel in
	b	eam and the grade of concrete		crete is a function of grade of concrete
	The co	orrect statements are:		
		D 41 /3 1 /3	(B)	Both (ii) and (iii)
	(A)	Both (i) and (iii)	(D)	Dotti (II) arid (III)

